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SECTION 1

INTRODUCTION

1.1 MOTIVATION FOR THE PRESENT fined in the unclassified literature (Lee.
PROGRAM. 1986). Most of the problems in compar-

ing lightning and HEMP have arisen be-

Frequently. the question arises as to the cause of an inadequate understanding of

degrec to which a system's exposure to the various lightning processes and of

lightning can be used to Infer Its vulncr- the electrical current and the rf radiation

ability or lack of vulnerability to high-al- associated with each.
titude nuclear EMP (HEMP). As will be
discussed in Section 1.2. various limita- Wideband electric current measure-
tions In the instrumentation and con- ments of lightning made at the ground

duct of past lightning experiments have strike point have generally suffered from

made comparisons with HEMP difficult. deficiencies In measurement technique

In connection with the development of a which have not allowed the higher frc-

time-of-arrival lightning location and quenclcs to be properly represented

characterization system, the University (Uman ct al.. 1982: Vance and Uman.

of Florida has evolved a modern, broad- 1988). while recent aircraft lightning

band instrumentation system capable of current measurements at the time of a

identifying and characterizing all of the lightning strike that have had the neces-

Important processes in a lightning flash. sary frequency response have been in-

This instrumentation has been employed volvecd in only relative small discharges

on the present program to study fast (e.g.. Nanevicz ct al., 1988: Rustan.

electric field pulses from cloud lightning 1987).

flashes occurring directly overhead. The Lightning rf measurements fall into two
study of overhead lightning avoids the general categories: (1) wideband electric
attenuation of high frequency field com- and magnetic field measurements in the
ponents resulting from propagation ever frequency range below some tens of
land and. to a lesser extent, over salt wa- MHz, from which spectra are obtained by
ter. Fourier analysis: and (2) narrowband

electromagnetic measurements from
Electric field wavcforms from over 1000 about 10 MHz to about 1 GHz. Wldeband
flashes were recorded. This report de- field measurements. the first category.
scribes the instrumentation. the conduct have generally been directed at specific
of the experiments, and discusses the lightning processes, most often the re-
significance of the experimental results turn stroke in ground discharges (e.g..
with regard to HEMP. Serhan ct al. 1980; Prcta ct al.. 1985:

Weidman Ct al,, 1981; Weidman and
1.2 TECHNICAL BACKGROUND. Krldcr. 1986: Wlllctt ct al.. 1990). but

the spectra of pulses from other light-
Several recent studies have addressed ning processes such as the stepped lead-
the issue of the relationship of the light- er. the preliminary breakdown, and
ning radio frequency (rf) spectrum to the certain types of cloud discharges have
rf spectrum of HEMP (Uman ct al.. 1982: also been dci ivcd from these wideband
Gardner ct al.. 1985; Vance and Uman. measurements (Weidman ct al.. 1981:
1988; Rustan. 1987: Nanevicz et al.. Willett et al.. 1989: Willctt ct al.. 19901.
1988). The HEMP spectrum is well de- The second category. narrowband field



measurements. generally have not been as indicated above. it is in this region
directed at specific processes and are of- above 10 MHz that the lightning data are
tel suspect regarding knowledge of the the least reliable.
distance to the lightning, the type of
lightning event. propagation effects, call- Recc-ntly. a new In-cloud lightning pro-
bration techniques, and assumptions re- cess has been identified which radiates
garding the physical characteristics of more strongly than any otler lightning
the lightning VHF noise (Nanevicz ct al.. process at frequencies from 10 Mllz to
1987. LcVine. 1987. Boulch and Hame- 50 MHz and perhaps at even higher fre-
lin. 1985) It Is very important to be able 4ucneces (Willett et al , 1989, LeVinc.
to Identify and discuss specific individu- 1980) This process, associated with In
al lightning processes because only tracloud flashes, produces isolated
these individual processes. weil localized pulses whose spectrum at 20 MHz ex-
in space, can have their radiation fields cecds that of first return strokes in
properly scaled with distance for an ade- ground discharges. previously viewed as
quate comparison with HEMP. Narrow- the lightning process with the largest fre-
band measurements may potentially quency output in that range (Willett ct
receive maximum noise levels from sev- al . 19891 Data taken as part of the
eral spatially separated sources radiat- present contract work will be presented
Ing at the same time. If. for example. In this report to add to the existing data
these separate sources are 1 km apart, it on this type of lightning cloud pulse
is not valid to extrapolate the maximum
noise level measured at. say. 10 km. to a Our primary conclusion relative to the

distance of. say. 50 m since an observer frequency spectra of various lightning

can only be at that range from one of the processes including the cloud pulses we

several sources (Vance and Uman. have studied, based on all available cvi-
1988). Further. narrowband measure- dence (Uman. 1987). Is that no lightning

ments made with too narrow a band- process has a time-domain risetime to

width can suffer from "pulse stacking." Initial peak value much faster than

leading to erroneously high observed sig- about 0. 1 s and hence that light-
nals assumed to be from single pulses ning-process risetlmes to Initial peak do

(Naneviez ct al . 1987). The published not contribute significantly to frequency

narrowband data have been compiled In components above about 10 MHz (as
reviews by Oh (1969). Oetzel and Pierce does the 5 to 10 nsec risetime of IIEMP.
(19691. Pierce (19771. Boulch and Hame- Lee. 1986). but tW-at the lightning

Ihn (1985), LeVine (1987). and others. time-domain waveforms for many

where questionable assumptions are in-cloud processes contain bursts of rap-

necessarily made in comparing the data ic. field variation throughout those wave-
from various Investigators. forms, most evident on electric fieldderivative records. which serve to en-

han~ce the spectrum above !0 Mllz.
In comparing lightning and HEMP spec-

tra. It Is the region above about 10 MHz A complete listing ofJournal papers in
which is the most important because it the reviewed literature concerning light-
Is at these higher frequencies that air- ning rf spectra and a separate listing uf
craft resonances occur and that coupling those papers containing a comparison of
through apertures on the surface of the those spectra with the HEMP spectrum
aircraft Is most efficient. Unfortunately. arc found in the Appendio.

2



SECTION 2

PREVIOUS LIGHTNING/HEMP COMPARISON

Lightning/HEMP rf spectra comparisons the results of some of these comparisnns
have been made using both theoretical for cloud pulses including the results of
analyses with model currents and fields Wlllett ct al. (1989) on the rf spectrum of
(e g.. Uman ct al.. 1982; Gardner et al.. the newly discovered type of cloud
1985; Vance and Uman. 1988) and ac- pulses referred to in the Introduction.
tual experimental data from lightning and In Figure 2 we present similar data
strikes to aircraft that were also sub. for return strokes in ground flashes. Tit,-
jected to an EMP simulator or other EMP lightn!r.g spectra in Figures 1 and 2 are
calibration (e.g.. Rustan. 1987. Nanevicz a!! normalized Wo a distance of 50 m us-
ct al.. 19881. in Figure 1 we summarize ing an inverse distance relationship.

3



SECTION 3

NEW DATA ACQUIRED FOR PRESENT CONTRACT

Measurements of wideband electric field were transferred to a 80386-based corn-
and narrowband VHF radiation from puter and stored on a hard disk. When
overhead cloud pulses were made during the hard disk capacity was reached, the
the summer and fall of 1989 at the Ken- information was transferred to magnetic
nedy Space Center. The wideband elec- tapes for permanent storage.
tric field recordings consisted of an
electronically integrated "slow-decay" A composite electric field waveform was
E-field sensor with a bandwidth of 6 Hz generated digitally using the scheme
to 7 MHz, a "fast-decay" E-field sensor shown in Figure 4. The digitized E-field
with a bandwidtit of 16 kHz to 7 Mhz, waveform was passed through a 3 MHz
and a dE/dt sensor with an upper fre- digital low-pass filter, thus removing fre-
quency response of 100 MHz. The nar- quency components above that frequen-
rowband VHF receivers were centered at cy. The digitized dE/dt waveform was
50 and 225 MHz. Each of these VHF re- numerically integrated and then passed
ceivers had a bhndwidth of 10 MHz. All through a 3 MHz high-pass filter, thus
systems were Jr' altaneously triggered removing frequency compe -ents below
by either the 226 MHz radiation alone or this frequency. The filtered waveforms
by a combination of that radiation, elec- were then added together to create the
tric field derivative. and electric field sig- composite electric field waveform. The
nals. actual frequency and phase response of

the filters were tested by applying a
The frequency spectra of the wideband square wave at the input of each filter
electric field waveforms have been calcu- and adding the outputs of the filters to
lated for the range of a few Hz to 50 produce a composite waveform. The
MHz. The electric field signals used I ir composite wavefi'rm was a square wave
the spectrum calculations are genera led of exactly the same amplitude as the in-
from both the direct field waveforms atad put waveform.
the numerically integrated dE/dt wave.
forms. The basic recording configuration The following sequence of figures illus-
is presented in Figure 3. The sensors trates the procedure described in the
were on the ground at a distance of previous paragraph. An electronically-
about 130 m from the closest structure, integrated E-field waveform Is shown in
ana were connected to the recording sta- Figure 5. A simultaneously recorded dE/
tion by means of fiber optics. The fiber dt figure is presented in Figure 6. After
optics had a bandwidth to 150 MHz. The performing a numerical integration on
output of a fiat plate antenna was Inte- the dE/dt signal, we obtain the wave-
grated using an electronic integrator and form shown in Figure 7. The composite
subsequently digitized. The electronic in- signal, obtained after scaling, filtering.
tegrators used in our experiment have and adding together both E-field wave-
an upper -3dB frequency of about 7 forms is presented in Figure 8. Record-
MHz. The output of the other fiat plate ings of the envelope of the narrowband
antenna, which is proportional to the de- VHF radiation at 50 and 225 MHz for the
rivative of the electric field, was simulta- same cloud pulse whose wideband fields
neously digitized along with both VHF are found in Figures 5 to 8 are presented
receiver outputs. The digitized signals in Figures 9 and 10, respectively.

4



The power frequency spectrum of the Figures 13 through 15 show calibrated
wideband E-ficld wavcforms was ob- records of 3 additional cloud pulses Fig-
tained using FFf techniques The wa~c- ures 16 through 21 are an uncalibrated
forms were properly windowed to prevent collection of different types of cloud
introduction of high frequency compo- pulses with their associated VHF radi-
ncnts in the spectrum A HEMP wave- ation and E-field records Each figure
forn. from Lee (1986) is presented in shows from top to bottom:
Figure 11. Figure 12 compares the
HEMP spectrum with the average spec- * Fast electric field integrato!
tra of the largest ten cloud pulses, out of
a total of 250 cloud pulses analyzed to *VIIF radiation at 50 MHz
date. with the cloud pulse fields normal-
ized to 50 meters assuming the sources * dE/dt record
to be directly overhead and at an altitude
of 5 km. *VHF radiation at 225 MHz

A wide variety of pulses were recorded • Slow electric field integrator
during the 1989 measurements. Pulses
with 10 to 90 percent risetimes faster It is Important to note that some trains
than 0.5 Its were common'y observed, of cloud pulses have a duration greater
The fastest cloud pulse rlsetime to Initial than 100 ps. Also. some records show
peak was about 0.3 vs. Since the significant radiation at 225 MHz while
sources of at least some of the cloud exhibiting little at 50 MHz.
pulses could be more or less horizontally
oriented, the magnitude of the radiation We have not as yet calibrated the VHF
detected at the horizontal flat plate sen- channels at 50 MHz and 225 MHz. When
sor. the vertical field component, would, that is done, we will be able to present a
In those cases, be reduced from the comparison of HEMP and the cloud
source value. Additionally. since the pulse spectrum to 225 MHz along with
cloud sources are assumed to be at the narrowband lightning data from previous
closest possible distance, 5 km. the field investigators. In lieu of that comparison,
values normalized to 50 m are smaller we show in Figure 22 the available nar-
than if the actual sources were some- rowband lightning data taken from Oh
what farther away. as is likely the case. (19691 along with the same HEMP spec-
The sum of these two effects might cause trum shown in Figures 1 and 2 All light-
the actual field observed at 50 m for ning data and the HEMP spectrum have
large pulses to be an underestimate, per- been normalized to a bandwidth of 1
haps of a factor of 2 or 3. from the val- kHz. The lightning data are normalized
ues plotted in Figure 12. Such a change to a distance of 1 mile. The reliability of
would be hardly noticeable on the loga- the narrowband lightning data has been
rithmie scale. disctssed in Section 1.2.

S. .. .... . .. ... . ... ...... :• - . .. .



SECTION 4

CONCLUSION

The shortest risetimc to initial peak val- Ing a narrowband signal In the 3 to 18
uc of overhead lightning pulses arc of MHz range while we employed a 225
the order of 0.3 Its. A broader bandwidth MHz trigger. often in combination with
system than that used would allow mca- electric field and electric field derivative
sur-tncnt of the rapid field variation oc- signals. Different portions of the cloud
cu,, throughout the cloud pulses pulse spectrum (i.e., 50 MHz vs 225
associated with frequencies above about MHz) may occur at different times and
50 MHz but would observe essentially presumably originate from different (al-
the same risetime to initial peak. That Is, though not much different) spatial loca-
the higher frcquence content of the tions during the ten microseconds or so
cloud pulses is contained in the rapid of the cloud pulse duration. Our spectra
field variation throughout the overall of the largest overhead cloud pulses are
waveforms, a time duration of about 10 nearly parallel to but significantly below
lis, and not In the Initial rise to peak the HEMP spectrum from 1 MHz to 50
value. MHz. as shown in Figure 12. while those

from Willett ct al. (1989) obtained from
lightning tens of kilometer offshore over

Cloud pulses of the type described by Le- salt water and pletted in Figure 1 show a
Vine (1988) and Willett et al. (1989), faster relative decay with increasing fre-
which we have analyzed In this report, quency. are significantly below ours be-
are much more common than these ear- tween 10 and 50 MHz, and are about
lier studies indicate, probably because equal to ours between 3 and 10 MHz.
their technique of triggering involved us-

6
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FILE 26800911.PB9 TIME 21.17:48.126857
# POINTS: 16384 163.8L, Isecs

FAST E-FIELO, INTEG. f 2 (RACK), PLATE f 4 5 VFSO

50 M~ VHF 5 VFSO

OE/dT PLATE 1 3 (MOD FIELD) .25 VFSD

225 MHz PREAMP 01. CONVERTER. LOGDET 5 VFSO

SLOW E-FIELD, INTEG. 0 3 (RACK). PLATE 0 5 ,2 VFSO

Figure 16. Example of simultaneously recorded waveforms.
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FILE 26801141.P89 TIME 21.24.24.907670
# POINTS: 16384 163.84 Isecs

FAST E-FIELD. INTEG. # 2 (RACK). PLATE 0 4 5 VFSO

50 M•z VHF^ ,25 VFSD

OE/dT PLATE f 3 (MDO FIELD) 5 VFSD

225 H(z PREAMP il. CONVERTER. LOGDET 5 VFSD

SLOW E-FIELD. INTEG. 0 3 (RACK). PLATE 0 5 .25 VFSD

Figure 17. Example of simultaneously recorded waveforms.

29



FILE 26801083.PB9 TIME 21: 22:49.858734
# POINTS: 16384 163.84 Isecs

FAST E-FIELO. INTIG. # 2 (RACK). PLATE 0 4 5 VFSO

50 M.Ez VMF 25 VFSD

dE/dT PLATE 0 3 (MDD FIELD) 5 VFSO

225 HHz PREAMP it. CONVERTER. LOGDET 5 VFSO

-"II
SLOW E-FIELO. INTEG. 9 3 (RACK). PLATE 0 5 .25 VFSD

Figure 18. Example of simultaneously recorded waveforms.
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FILE 26601058.P89 TIME 21. 21: 57.957315
# POINTS: 16284 163.84 1secs

FAST E-FIELO. IlTEG E 2 MACK). PLATE 0 4 5 VFSD

50 MHZ VHF .25 VFSO

OE/OT PLATE 4 3 (HOD FIELD) 5 VFSO

1,25 MHZ PREAMP 0l. CONVERTER, LCGZET .5 VFSO

SLOW E-FIELO. INTEG. #3 (RACK). PLATE #5 .25 VFSO

Figure 19. Example of simultaneously recorded vaveforms.
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FILE 26800380.P,89 TIME 20: 21:48.885808b
# POINTS: 16384 163.84 )secs

FAST E-FELR ITEG f ? (RACK). PLATE , 4 .25 VFSC

i 50 .IZ VIV I VFSO

dIE/bT PLATE # 3 (MOD FIELD) I VFSDI 'I

225 MHz PSEAMP 01. C0'NVERTES, LOCGIT .25 vFSD

SLOW E-FIELD. INTEG. 9 3 (RACK). PLATE I 5 .25 VFSO

Figure 20. Example of simultaneously recorded waveforms.
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FILE 26800881.P89 TIME 21: 16.57.,756252
# POINTS: 16384 163.84 1secs

FAST E-FIELD. INTEG. 2 2 (MACK). PLATE f 4 5 VFSO

50 M-z VHF .25 VFSO

OE/OT PLATZ" 1 3 (MOO FIELD) .25 VFSO

225 MHZ PREAMP £i. CONVERTF.P LOGDET .5 VFSD

SLOW E-FIELD. INTEG. 0 3 (RACK). PLATE 0 5 .25 VFSO

Figure 21. Example of simultaneously recorded waveforms.
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